The analytic hierarchy process with stochastic judgements
Ian Durbach,
Risto Lahdelma and
Pekka Salminen
European Journal of Operational Research, 2014, vol. 238, issue 2, 552-559
Abstract:
The analytic hierarchy process (AHP) is a widely-used method for multicriteria decision support based on the hierarchical decomposition of objectives, evaluation of preferences through pairwise comparisons, and a subsequent aggregation into global evaluations. The current paper integrates the AHP with stochastic multicriteria acceptability analysis (SMAA), an inverse-preference method, to allow the pairwise comparisons to be uncertain. A simulation experiment is used to assess how the consistency of judgements and the ability of the SMAA-AHP model to discern the best alternative deteriorates as uncertainty increases. Across a range of simulated problems results indicate that, according to conventional benchmarks, judgements are likely to remain consistent unless uncertainty is severe, but that the presence of uncertainty in almost any degree is sufficient to make the choice of best alternative unclear.
Keywords: Decision analysis; Multicriteria; Analytic hierarchy process; Uncertainty; Simulation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714002847
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:238:y:2014:i:2:p:552-559
DOI: 10.1016/j.ejor.2014.03.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().