Fast computation of bounds for two-terminal network reliability
Stefano Sebastio,
Kishor S. Trivedi,
Dazhi Wang and
Xiaoyan Yin
European Journal of Operational Research, 2014, vol. 238, issue 3, 810-823
Abstract:
In this paper, an algorithm for the fast computation of network reliability bounds is proposed. The evaluation of the network reliability is an intractable problem for very large networks, and hence approximate solutions based on reliability bounds have assumed importance. The proposed bounds computation algorithm is based on an efficient BDD representation of the reliability graph model and a novel search technique to find important minpaths/mincuts to quickly reduce the gap between the reliability upper and lower bounds. Furthermore, our algorithm allows the control of the gap between the two bounds by controlling the overall execution time. Therefore, a trade-off between prediction accuracy and computational resources can be easily made in our approach. The numerical results are presented for large real example reliability graphs to show the efficacy of our approach.
Keywords: Binary Decision Diagram (BDD); Bounds computation; Large network reliability; Reliability graph; Reliability prediction (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714003774
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:238:y:2014:i:3:p:810-823
DOI: 10.1016/j.ejor.2014.04.035
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().