Applying oracles of on-demand accuracy in two-stage stochastic programming – A computational study
Christian Wolf,
Csaba I. Fábián,
Achim Koberstein and
Leena Suhl
European Journal of Operational Research, 2014, vol. 239, issue 2, 437-448
Abstract:
Traditionally, two variants of the L-shaped method based on Benders’ decomposition principle are used to solve two-stage stochastic programming problems: the aggregate and the disaggregate version. In this study we report our experiments with a special convex programming method applied to the aggregate master problem. The convex programming method is of the type that uses an oracle with on-demand accuracy. We use a special form which, when applied to two-stage stochastic programming problems, is shown to integrate the advantages of the traditional variants while avoiding their disadvantages. On a set of 105 test problems, we compare and analyze parallel implementations of regularized and unregularized versions of the algorithms. The results indicate that solution times are significantly shortened by applying the concept of on-demand accuracy.
Keywords: Stochastic programming; Two-stage problems; Decomposition; Bundle methods (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004172
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:239:y:2014:i:2:p:437-448
DOI: 10.1016/j.ejor.2014.05.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().