Decision-network polynomials and the sensitivity of decision-support models
Emanuele Borgonovo and
Fabio Tonoli
European Journal of Operational Research, 2014, vol. 239, issue 2, 490-503
Abstract:
Decision makers benefit from the utilization of decision-support models in several applications. Obtaining managerial insights is essential to better inform the decision-process. This work offers an in-depth investigation into the structural properties of decision-support models. We show that the input–output mapping in influence diagrams, decision trees and decision networks is piecewise multilinear. The conditions under which sensitivity information cannot be extracted through differentiation are examined in detail. By complementing high-order derivatives with finite change sensitivity indices, we obtain a systematic approach that allows analysts to gain a wide range of managerial insights. A well-known case study in the medical sector illustrates the findings.
Keywords: Decision analysis; Influence diagrams; Decision trees; Bayesian networks; Sensitivity analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004226
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:239:y:2014:i:2:p:490-503
DOI: 10.1016/j.ejor.2014.05.015
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().