Likelihood estimation of consumer preferences in choice-based conjoint analysis
Merja Halme and
Markku Kallio
European Journal of Operational Research, 2014, vol. 239, issue 2, 556-564
Abstract:
In marketing research the measurement of individual preferences and assessment of utility functions have long traditions. Conjoint analysis, and particularly choice-based conjoint analysis (CBC), is frequently employed for such measurement. The world today appears increasingly customer or user oriented wherefore research intensity in conjoint analysis is rapidly increasing in various fields, OR/MS being no exception. Although several optimization based approaches have been suggested since the introduction of the Hierarchical Bayes (HB) method for estimating CBC utility functions, recent comparisons indicate that challenging HB is hard. Based on likelihood maximization we propose a method called LM and compare its performance with HB using twelve field data sets. Performance comparisons are based on holdout validation, i.e. predictive performance. Average performance of LM indicates an improvement over HB and the difference is statistically significant. We also use simulation based data sets to compare the performance for parameter recovery. In terms of both predictive performance and RMSE a smaller number of questions in CBC appears to favor LM over HB.
Keywords: Conjoint analysis; Utility function; Preference estimation; Maximum likelihood; Marketing research (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004834
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:239:y:2014:i:2:p:556-564
DOI: 10.1016/j.ejor.2014.05.044
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().