Continuous quadratic programming formulations of optimization problems on graphs
William W. Hager and
James T. Hungerford
European Journal of Operational Research, 2015, vol. 240, issue 2, 328-337
Abstract:
Four NP-hard optimization problems on graphs are studied: The vertex separator problem, the edge separator problem, the maximum clique problem, and the maximum independent set problem. We show that the vertex separator problem is equivalent to a continuous bilinear quadratic program. This continuous formulation is compared to known continuous quadratic programming formulations for the edge separator problem, the maximum clique problem, and the maximum independent set problem. All of these formulations, when expressed as maximization problems, are shown to follow from the convexity properties of the objective function along the edges of the feasible set. An algorithm is given which exploits the continuous formulation of the vertex separator problem to quickly compute approximate separators. Computational results are given.
Keywords: Vertex separator; Graph partitioning; Maximum clique; Continuous formulation; Quadratic programming (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004810
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:240:y:2015:i:2:p:328-337
DOI: 10.1016/j.ejor.2014.05.042
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().