An approximate moving boundary method for American option pricing
Arun Chockalingam and
Kumar Muthuraman
European Journal of Operational Research, 2015, vol. 240, issue 2, 431-438
Abstract:
We present a method to solve the free-boundary problem that arises in the pricing of classical American options. Such free-boundary problems arise when one attempts to solve optimal-stopping problems set in continuous time. American option pricing is one of the most popular optimal-stopping problems considered in literature. The method presented in this paper primarily shows how one can leverage on a one factor approximation and the moving boundary approach to construct a solution mechanism. The result is an algorithm that has superior runtimes-accuracy balance to other computational methods that are available to solve the free-boundary problems. Exhaustive comparisons to other pricing methods are provided. We also discuss a variant of the proposed algorithm that allows for the computation of only one option price rather than the entire price function, when the requirement is such.
Keywords: Stochastic control; Optimal stopping; Free boundary PDEs; Approximate boundaries (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714005979
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:240:y:2015:i:2:p:431-438
DOI: 10.1016/j.ejor.2014.07.031
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().