EconPapers    
Economics at your fingertips  
 

Support vector regression for loss given default modelling

Xiao Yao, Jonathan Crook and Galina Andreeva

European Journal of Operational Research, 2015, vol. 240, issue 2, 528-538

Abstract: Loss given default modelling has become crucially important for banks due to the requirement that they comply with the Basel Accords and to their internal computations of economic capital. In this paper, support vector regression (SVR) techniques are applied to predict loss given default of corporate bonds, where improvements are proposed to increase prediction accuracy by modifying the SVR algorithm to account for heterogeneity of bond seniorities. We compare the predictions from SVR techniques with thirteen other algorithms. Our paper has three important results. First, at an aggregated level, the proposed improved versions of support vector regression techniques outperform other methods significantly. Second, at a segmented level, by bond seniority, least square support vector regression demonstrates significantly better predictive abilities compared with the other statistical models. Third, standard transformations of loss given default do not improve prediction accuracy. Overall our empirical results show that support vector regression techniques are a promising technique for banks to use to predict loss given default.

Keywords: Support vector regression; Loss given default; Recovery rate; Credit risk modelling (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714005463
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:240:y:2015:i:2:p:528-538

DOI: 10.1016/j.ejor.2014.06.043

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:240:y:2015:i:2:p:528-538