EconPapers    
Economics at your fingertips  
 

Concurrent multiresponse non-linear screening: Robust profiling of webpage performance

George J. Besseris

European Journal of Operational Research, 2015, vol. 241, issue 1, 161-176

Abstract: Profiling engineered data with robust mining methods continues attracting attention in knowledge engineering systems. The purpose of this article is to propose a simple technique that deals with non-linear multi-factorial multi-characteristic screening suitable for knowledge discovery studies. The method is designed to proactively seek and quantify significant information content in engineered mini-datasets. This is achieved by deploying replicated fractional-factorial sampling schemes. Compiled multi-response data are converted to a single master-response effectuated by a series of distribution-free transformations and multi-compressed data fusions. The resulting amalgamated master response is deciphered by non-linear multi-factorial stealth stochastics intended for saturated schemes. The stealth properties of our method target processing datasets which might be overwhelmed by a lack of knowledge about the nature of reference distributions at play. Stealth features are triggered to overcome restrictions regarding the data normality conformance, the effect sparsity assumption and the inherent collapse of the ‘unexplainable error’ connotation in saturated arrays. The technique is showcased by profiling four ordinary controlling factors that influence webpage content performance by collecting data from a commercial browser monitoring service on a large scale web host. The examined effects are: (1) the number of Cascading Style Sheets files, (2) the number of JavaScript files, (3) the number of Image files, and (4) the Domain Name System Aliasing. The webpage performance level was screened against three popular characteristics: (1) the time to first visual, (2) the total loading time, and (3) the customer satisfaction. Our robust multi-response data mining technique is elucidated for a ten-replicate run study dictated by an L9(34) orthogonal array scheme where any uncontrolled noise embedded contribution has not been necessarily excluded.

Keywords: Robust screening; Non-linear profiling; Non-parametric screening; Non-linear orthogonal array; Webpage performance (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714005049
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:241:y:2015:i:1:p:161-176

DOI: 10.1016/j.ejor.2014.06.021

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:241:y:2015:i:1:p:161-176