Solving air traffic conflict problems via local continuous optimization
Clément Peyronne,
Andrew R. Conn,
Marcel Mongeau and
Daniel Delahaye
European Journal of Operational Research, 2015, vol. 241, issue 2, 502-512
Abstract:
This paper first introduces an original trajectory model using B-splines and a new semi-infinite programming formulation of the separation constraint involved in air traffic conflict problems. A new continuous optimization formulation of the tactical conflict-resolution problem is then proposed. It involves very few optimization variables in that one needs only one optimization variable to determine each aircraft trajectory. Encouraging numerical experiments show that this approach is viable on realistic test problems. Not only does one not need to rely on the traditional, discretized, combinatorial optimization approaches to this problem, but, moreover, local continuous optimization methods, which require relatively fewer iterations and thereby fewer costly function evaluations, are shown to improve the performance of the overall global optimization of this non-convex problem.
Keywords: Air traffic conflict problem; B-splines; Continuous optimization; Genetic algorithms; Semi-infinite programming (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714007589
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:241:y:2015:i:2:p:502-512
DOI: 10.1016/j.ejor.2014.08.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().