Solving the Aircraft Landing Problem with time discretization approach
Alain Faye
European Journal of Operational Research, 2015, vol. 242, issue 3, 1028-1038
Abstract:
This paper studies the multiple runway Aircraft Landing Problem. The aim is to schedule arriving aircraft to available runways at the airport. Landing times lie within predefined time windows and safety separation constraints between two successive landings must be satisfied. We propose a new approach for solving the problem. The method is based on an approximation of the separation time matrix and on time discretization. The separation matrix is approximated by a rank two matrix. This provides lower bounds or upper bounds depending on the choice of the approximating matrix. These bounds are used in a constraint generation algorithm to, exactly or heuristically, solve the problem. Computational tests, performed on publicly available problems involving up to 500 aircraft, show the efficiency of the approach.
Keywords: Aircraft Landing Problem; Time discretization; Mixed Integer Programming; Dynamic constraint generation algorithm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714009035
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:242:y:2015:i:3:p:1028-1038
DOI: 10.1016/j.ejor.2014.10.064
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().