Two-phase branch-and-cut for the mixed capacitated general routing problem
Stefan Irnich,
Demetrio Laganà,
Claudia Schlebusch and
Francesca Vocaturo
European Journal of Operational Research, 2015, vol. 243, issue 1, 17-29
Abstract:
The Mixed Capacitated General Routing Problem (MCGRP) is defined over a mixed graph, for which some vertices must be visited and some links must be traversed at least once. The problem consists of determining a set of least-cost vehicle routes that satisfy this requirement and respect the vehicle capacity. Few papers have been devoted to the MCGRP, in spite of interesting real-world applications, prevalent in school bus routing, mail delivery, and waste collection. This paper presents a new mathematical model for the MCGRP based on two-index variables. The approach proposed for the solution is a two-phase branch-and-cut algorithm, which uses an aggregate formulation to develop an effective lower bounding procedure. This procedure also provides strong valid inequalities for the two-index model. Extensive computational experiments over benchmark instances are presented.
Keywords: General routing problem; Mixed graph; Integer programming; Branch-and-cut algorithm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714009096
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:1:p:17-29
DOI: 10.1016/j.ejor.2014.11.005
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().