The Steiner Traveling Salesman Problem with online edge blockages
Huili Zhang,
Weitian Tong,
Yinfeng Xu and
Guohui Lin
European Journal of Operational Research, 2015, vol. 243, issue 1, 30-40
Abstract:
We consider the online Steiner Traveling Salesman Problem. In this problem, we are given an edge-weighted graph G = (V, E) and a subset D⊆V of destination vertices, with the optimization goal to find a minimum weight closed tour that traverses every destination vertex of D at least once. During the traversal, the salesman could encounter at most k non-recoverable blocked edges. The edge blockages are real-time, meaning that the salesman knows about a blocked edge whenever it occurs. We first show a lower bound on the competitive ratio and present an online optimal algorithm for the problem. While this optimal algorithm has non-polynomial running time, we present another online polynomial-time near optimal algorithm for the problem. Experimental results show that our online polynomial-time algorithm produces solutions very close to the offline optimal solutions.
Keywords: Traveling Salesman Problem; Steiner TSP; Online edge blockage; Online algorithm; Competitive ratio (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714009175
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:1:p:30-40
DOI: 10.1016/j.ejor.2014.11.013
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().