GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models
Miha Mlakar,
Dejan Petelin,
Tea Tušar and
Bogdan Filipič
European Journal of Operational Research, 2015, vol. 243, issue 2, 347-361
Abstract:
This paper proposes a novel surrogate-model-based multiobjective evolutionary algorithm called Differential Evolution for Multiobjective Optimization based on Gaussian Process models (GP-DEMO). The algorithm is based on the newly defined relations for comparing solutions under uncertainty. These relations minimize the possibility of wrongly performed comparisons of solutions due to inaccurate surrogate model approximations. The GP-DEMO algorithm was tested on several benchmark problems and two computationally expensive real-world problems. To be able to assess the results we compared them with another surrogate-model-based algorithm called Generational Evolution Control (GEC) and with the Differential Evolution for Multiobjective Optimization (DEMO). The quality of the results obtained with GP-DEMO was similar to the results obtained with DEMO, but with significantly fewer exactly evaluated solutions during the optimization process. The quality of the results obtained with GEC was lower compared to the quality gained with GP-DEMO and DEMO, mainly due to wrongly performed comparisons of the inaccurately approximated solutions.
Keywords: Multiple objective programming; Evolutionary algorithms; Surrogate models; Gaussian Process modeling; Probable Pareto dominance (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714003208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:2:p:347-361
DOI: 10.1016/j.ejor.2014.04.011
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().