Anytime Pareto local search
Jérémie Dubois-Lacoste,
Manuel López-Ibáñez and
Thomas Stützle
European Journal of Operational Research, 2015, vol. 243, issue 2, 369-385
Abstract:
Pareto Local Search (PLS) is a simple and effective local search method for tackling multi-objective combinatorial optimization problems. It is also a crucial component of many state-of-the-art algorithms for such problems. However, PLS may be not very effective when terminated before completion. In other words, PLS has poor anytime behavior. In this paper, we study the effect that various PLS algorithmic components have on its anytime behavior. We show that the anytime behavior of PLS can be greatly improved by using alternative algorithmic components. We also propose Dynagrid, a dynamic discretization of the objective space that helps PLS to converge faster to a good approximation of the Pareto front and continue to improve it if more time is available. We perform a detailed empirical evaluation of the new proposals on the bi-objective traveling salesman problem and the bi-objective quadratic assignment problem. Our results demonstrate that the new PLS variants not only have significantly better anytime behavior than the original PLS, but also may obtain better results for longer computation time or upon completion.
Keywords: Pareto local search; Anytime optimization; Multi-objective optimization; Traveling salesman problem; Quadratic assignment problem (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714009011
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:2:p:369-385
DOI: 10.1016/j.ejor.2014.10.062
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().