EconPapers    
Economics at your fingertips  
 

Multi-objectivization, fitness landscape transformation and search performance: A case of study on the hp model for protein structure prediction

Mario Garza-Fabre, Gregorio Toscano-Pulido and Eduardo Rodriguez-Tello

European Journal of Operational Research, 2015, vol. 243, issue 2, 405-422

Abstract: Multi-objectivization represents a current and promising research direction which has led to the development of more competitive search mechanisms. This concept involves the restatement of a single-objective problem in an alternative multi-objective form, which can facilitate the process of finding a solution to the original problem. Recently, this transformation was applied with success to the HP model, a simplified yet challenging representation of the protein structure prediction problem. The use of alternative multi-objective formulations, based on the decomposition of the original objective function of the problem, has significantly increased the performance of search algorithms. The present study goes further on this topic. With the primary aim of understanding and quantifying the potential effects of multi-objectivization, a detailed analysis is first conducted to evaluate the extent to which this problem transformation impacts on an important characteristic of the fitness landscape, neutrality. To the authors’ knowledge, the effects of multi-objectivization have not been previously investigated by explicitly sampling and evaluating the neutrality of the fitness landscape. Although focused on the HP model, most of the findings of such an analysis can be extrapolated to other problem domains, contributing thus to the general understanding of multi-objectivization. Finally, this study presents a comparative analysis where the advantages of multi-objectivization are evaluated in terms of the performance of a basic evolutionary algorithm. Both the two- and three-dimensional variants of the HP model (based on the square and cubic lattices, respectively) are considered.

Keywords: Multi-objectivization; Fitness landscape analysis; Protein structure prediction; Hydrophobic-polar model; Multi-objective evolutionary algorithms (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004925
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:2:p:405-422

DOI: 10.1016/j.ejor.2014.06.009

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:243:y:2015:i:2:p:405-422