Preference-inspired co-evolutionary algorithms using weight vectors
Rui Wang,
Robin C. Purshouse and
Peter J. Fleming
European Journal of Operational Research, 2015, vol. 243, issue 2, 423-441
Abstract:
Decomposition based algorithms perform well when a suitable set of weights are provided; however determining a good set of weights a priori for real-world problems is usually not straightforward due to a lack of knowledge about the geometry of the problem. This study proposes a novel algorithm called preference-inspired co-evolutionary algorithm using weights (PICEA-w) in which weights are co-evolved with candidate solutions during the search process. The co-evolution enables suitable weights to be constructed adaptively during the optimisation process, thus guiding candidate solutions towards the Pareto optimal front effectively. The benefits of co-evolution are demonstrated by comparing PICEA-w against other leading decomposition based algorithms that use random, evenly distributed and adaptive weights on a set of problems encompassing the range of problem geometries likely to be seen in practice, including simultaneous optimisation of up to seven conflicting objectives. Experimental results show that PICEA-w outperforms the comparison algorithms for most of the problems and is less sensitive to the problem geometry.
Keywords: Evolutionary algorithms; Multi-objective optimisation; Many-objective; Co-evolution; Weights (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714004263
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:2:p:423-441
DOI: 10.1016/j.ejor.2014.05.019
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().