Dynamic scaling on the limited memory BFGS method
Fahimeh Biglari
European Journal of Operational Research, 2015, vol. 243, issue 3, 697-702
Abstract:
This paper describes a limited-memory quasi-Newton method in which the initial inverse Hessian approximation is constructed based on the concept of equilibration of the inverse Hessian matrix. Curvature information about the objective function is stored in the form of a diagonal matrix, and plays the dual role of providing an initial matrix and of equilibrating for limited memory BFGS (LBFGS) iterations. An extensive numerical testing has been performed showing that the diagonal scaling strategy proposed is very effective.
Keywords: (B)Large scale optimization; (I)Nonlinear programming; Limited memory quasi-Newton methods; Column scaling; Equilibrated matrix, (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714010686
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:3:p:697-702
DOI: 10.1016/j.ejor.2014.12.050
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().