Inverse chromatic number problems in interval and permutation graphs
Yerim Chung,
Jean-François Culus and
Marc Demange
European Journal of Operational Research, 2015, vol. 243, issue 3, 763-773
Abstract:
Given a graph G and a positive integer K, the inverse chromatic number problem consists in modifying the graph as little as possible so that it admits a chromatic number not greater than K. In this paper, we focus on the inverse chromatic number problem for certain classes of graphs. First, we discuss diverse possible versions and then focus on two application frameworks which motivate this problem in interval and permutation graphs: the inverse booking problem and the inverse track assignment problem. The inverse booking problem is closely related to some previously known scheduling problems; we propose new hardness results and polynomial cases. The inverse track assignment problem motivates our study of the inverse chromatic number problem in permutation graphs; we show how to solve in polynomial time a generalization of the problem with a bounded number of colors.
Keywords: Inverse combinatorial optimization; Graph coloring; Interval graphs; Permutation graphs (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714010467
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:3:p:763-773
DOI: 10.1016/j.ejor.2014.12.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().