Mathematical programming techniques in water network optimization
D’Ambrosio, Claudia,
Andrea Lodi,
Sven Wiese and
Cristiana Bragalli
European Journal of Operational Research, 2015, vol. 243, issue 3, 774-788
Abstract:
In this article we survey mathematical programming approaches to problems in the field of drinking water distribution network optimization. Among the predominant topics treated in the literature, we focus on two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases is a nonlinear network flow model, and we give an overview on the more specific modeling aspects in each case. The overall mathematical model is a Mixed Integer Nonlinear Program having a common structure with respect to how water dynamics in pipes are described. Finally, we survey the algorithmic approaches to solve the proposed problems and we discuss computation on various types of water networks.
Keywords: Networks; Mixed Integer Nonlinear Programming; Combinatorial optimization; Global optimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714010571
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:243:y:2015:i:3:p:774-788
DOI: 10.1016/j.ejor.2014.12.039
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().