EconPapers    
Economics at your fingertips  
 

Mathematical programming approaches for classes of random network problems

Jordi Castro and Stefano Nasini

European Journal of Operational Research, 2015, vol. 245, issue 2, 402-414

Abstract: Random simulations from complicated combinatorial sets are often needed in many classes of stochastic problems. This is particularly true in the analysis of complex networks, where researchers are usually interested in assessing whether an observed network feature is expected to be found within families of networks under some hypothesis (named conditional random networks, i.e., networks satisfying some linear constraints). This work presents procedures to generate networks with specified structural properties which rely on the solution of classes of integer optimization problems. We show that, for many of them, the constraints matrices are totally unimodular, allowing the efficient generation of conditional random networks by specialized interior-point methods. The computational results suggest that the proposed methods can represent a general framework for the efficient generation of random networks even beyond the models analyzed in this paper. This work also opens the possibility for other applications of mathematical programming in the analysis of complex networks.

Keywords: Interior-point methods; Integer programming; Complex networks; Total unimodularity; Central path (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715002283
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:245:y:2015:i:2:p:402-414

DOI: 10.1016/j.ejor.2015.03.021

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:245:y:2015:i:2:p:402-414