EconPapers    
Economics at your fingertips  
 

Ant colony optimization based binary search for efficient point pattern matching in images

N.K. Sreeja and A. Sankar

European Journal of Operational Research, 2015, vol. 246, issue 1, 154-169

Abstract: Point Pattern Matching (PPM) is a task to pair up the points in two images of a same scene. There are many existing approaches in literature for point pattern matching. However, the drawback lies in the high complexity of the algorithms. To overcome this drawback, an Ant Colony Optimization based Binary Search Point Pattern Matching (ACOBSPPM) algorithm is proposed. According to this approach, the edges of the image are stored in the form of point patterns. To match an incoming image with the stored images, the ant agent chooses a point value in the incoming image point pattern and employs a binary search method to find a match with the point values in the stored image point pattern chosen for comparison. Once a match occurs, the ant agent finds a match for the next point value in the incoming image point pattern by searching between the matching position and maximum number of point values in the stored image point pattern. The stored image point pattern having the maximum number of matches is the image matching with the incoming image. Experimental results are shown to prove that ACOBSPPM algorithm is efficient when compared to the existing point pattern matching approaches in terms of time complexity and precision accuracy.

Keywords: Decision support systems; Image recognition; Point pattern matching; Ant Colony Optimization; Binary search (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715002842
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:246:y:2015:i:1:p:154-169

DOI: 10.1016/j.ejor.2015.04.012

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:154-169