An inexact proximal method for quasiconvex minimization
E.A. Papa Quiroz,
L. Mallma Ramirez and
P.R. Oliveira
European Journal of Operational Research, 2015, vol. 246, issue 3, 721-729
Abstract:
In this paper we propose an inexact proximal point method to solve constrained minimization problems with locally Lipschitz quasiconvex objective functions. Assuming that the function is also bounded from below, lower semicontinuous and using proximal distances, we show that the sequence generated for the method converges to a stationary point of the problem.
Keywords: Computing science; Global optimization; Nonlinear programming; Proximal point methods; Quasiconvex minimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715004312
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:246:y:2015:i:3:p:721-729
DOI: 10.1016/j.ejor.2015.05.041
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().