The impact of information sharing, random yield, correlation, and lead times in closed loop supply chains
Takamichi Hosoda,
Stephen M. Disney and
Srinagesh Gavirneni
European Journal of Operational Research, 2015, vol. 246, issue 3, 827-836
Abstract:
We investigate the impact of advance notice of product returns on the performance of a decentralised closed loop supply chain. The market demands and the product returns are stochastic and are correlated with each other. The returned products are converted into “as-good-as-new” products and used, together with new products, to satisfy the market demand. The remanufacturing process takes time and is subject to a random yield. We investigate the benefit of the manufacturer obtaining advance notice of product returns from the remanufacturer. We demonstrate that lead times, random yields and the parameters describing the returns play a significant role in the benefit of the advance notice scheme. Our mathematical results offer insights into the benefits of lead time reduction and the adoption of information sharing schemes.
Keywords: Supply chain management; Closed loop supply chain; Information sharing; Random yield; Lead time (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715004269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:246:y:2015:i:3:p:827-836
DOI: 10.1016/j.ejor.2015.05.036
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().