EconPapers    
Economics at your fingertips  
 

Continuous (s, S) policy with MMPP correlated demand

Walid W. Nasr and Bacel Maddah

European Journal of Operational Research, 2015, vol. 246, issue 3, 874-885

Abstract: This work considers a continuous inventory replenishment system where demand is stochastic and dependent on the state of the environment. A Markov Modulated Poisson Process (MMPP) is utilized to model the demand process where the corresponding embedded Markov Chain represents the state of the environment. The equations to calculate the system inventory measures and the number of orders per unit time are obtained for a continuous, infinite horizon and dynamically changing (s, S) policy. An efficient optimization heuristic is presented and compared to the commonly used approach of approximating the demand-count process over the lead time with a Normal distribution. An investigation of the MMPP demand process is considered where we quantify the impact of variability in the demand-count process which is due to auto-correlation. Our findings indicate that when demand correlation is high, a dynamic control, where the (s, S) policy changes with state of the environment governing the MMPP, is highly superior to the commonly used “static” heuristics. We propose two dynamic policies of varying computational complexity, and cost efficiency, depending on the class of the product (one for class A, and one for classes B and C), to handle such high-correlation situations.

Keywords: Stochastic demand; Correlated demand; MMPP; Inventory systems; Ordering policies (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715004191
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:246:y:2015:i:3:p:874-885

DOI: 10.1016/j.ejor.2015.05.029

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:246:y:2015:i:3:p:874-885