Mixed integer second-order cone programming formulations for variable selection in linear regression
Ryuhei Miyashiro and
Yuichi Takano
European Journal of Operational Research, 2015, vol. 247, issue 3, 721-731
Abstract:
This study concerns a method of selecting the best subset of explanatory variables in a multiple linear regression model. Goodness-of-fit measures, for example, adjusted R2, AIC, and BIC, are generally used to evaluate a subset regression model. Although variable selection with regard to these measures is usually performed with a stepwise regression method, it does not always provide the best subset of explanatory variables. In this paper, we propose mixed integer second-order cone programming formulations for selecting the best subset of variables with respect to adjusted R2, AIC, and BIC. Computational experiments show that, in terms of these measures, the proposed formulations yield better solutions than those provided by common stepwise regression methods.
Keywords: Integer programming; Variable selection; Multiple linear regression; Information criterion; Second-order cone programming (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715006359
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:247:y:2015:i:3:p:721-731
DOI: 10.1016/j.ejor.2015.06.081
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().