The multiple container loading problem with preference
Tian Tian,
Wenbin Zhu,
Andrew Lim and
Lijun Wei
European Journal of Operational Research, 2016, vol. 248, issue 1, 84-94
Abstract:
An international audio equipment manufacturer would like to help its customers reduce unit shipping costs by adjusting order quantity according to product preference. We introduce the problem faced by the manufacturer as the Multiple Container Loading Problem with Preference (MCLPP) and propose a combinatorial formulation for the MCLPP. We develop a two-phase algorithm to solve the problem. In phase one, we estimate the most promising region of the solution space based on performance statistics of the sub-problem solver. In phase two, we find a feasible solution in the promising region by solving a series of 3D orthogonal packing problems. A unique feature of our approach is that we try to estimate the average capability of the sub-routine algorithm for the single container loading problem in phase one and take it into account in the overall planning. To obtain a useful estimate, we randomly generate a large set of single container loading problem instances that are statistically similar to the manufacturer’s historical order data. We generate a large set of test instances based on the historical data provided by the manufacturer and conduct extensive computational experiments to demonstrate the effectiveness of our approach.
Keywords: Packing; Decision support; Combinatorial optimization; Statistical estimation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715006232
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:248:y:2016:i:1:p:84-94
DOI: 10.1016/j.ejor.2015.07.002
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().