Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective
Tito Homem-de-Mello and
Bernardo K. Pagnoncelli
European Journal of Operational Research, 2016, vol. 249, issue 1, 188-199
Abstract:
We discuss the incorporation of risk measures into multistage stochastic programs. While much attention has been recently devoted in the literature to this type of model, it appears that there is no consensus on the best way to accomplish that goal. In this paper, we discuss pros and cons of some of the existing approaches. A key notion that must be considered in the analysis is that of consistency, which roughly speaking means that decisions made today should agree with the planning made yesterday for the scenario that actually occurred. Several definitions of consistency have been proposed in the literature, with various levels of rigor; we provide our own definition and give conditions for a multi-period risk measure to be consistent. A popular way to ensure consistency is to nest the one-step risk measures calculated in each stage, but such an approach has drawbacks from the algorithmic viewpoint. We discuss a class of risk measures—which we call expected conditional risk measures—that address those shortcomings. We illustrate the ideas set forth in the paper with numerical results for a pension fund problem in which a company acts as the sponsor of the fund and the participants’ plan is defined-benefit.
Keywords: Stochastic programming; Risk aversion; Multistage; Consistency; Pension funds (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715004385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:249:y:2016:i:1:p:188-199
DOI: 10.1016/j.ejor.2015.05.048
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().