Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition
Esmaeil Keyvanshokooh,
Sarah M. Ryan and
Elnaz Kabir
European Journal of Operational Research, 2016, vol. 249, issue 1, 76-92
Abstract:
Environmental, social and economic concerns motivate the operation of closed-loop supply chain networks (CLSCN) in many industries. We propose a novel profit maximization model for CLSCN design as a mixed-integer linear program in which there is flexibility in covering the proportions of demand satisfied and returns collected based on the firm's policies. Our major contribution is to develop a novel hybrid robust-stochastic programming (HRSP) approach to simultaneously model two different types of uncertainties by including stochastic scenarios for transportation costs and polyhedral uncertainty sets for demands and returns. Transportation cost scenarios are generated using a Latin Hypercube Sampling method and scenario reduction is applied to consolidate them. An accelerated stochastic Benders decomposition algorithm is proposed for solving this model. To speed up the convergence of this algorithm, valid inequalities are introduced to improve the lower bound quality, and also a Pareto-optimal cut generation scheme is used to strengthen the Benders optimality cuts. Numerical studies are performed to verify our mathematical formulation and also demonstrate the benefits of the HRSP approach. The performance improvements achieved by the valid inequalities and Pareto-optimal cuts are demonstrated in randomly generated instances.
Keywords: Robustness and sensitivity analysis; Stochastic programming; Robust optimization; Closed-loop supply chain; Benders decomposition (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715007833
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:249:y:2016:i:1:p:76-92
DOI: 10.1016/j.ejor.2015.08.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().