Take it to the limit: Innovative CVaR applications to extreme credit risk measurement
David Allen,
Robert Powell and
A.K. Singh
European Journal of Operational Research, 2016, vol. 249, issue 2, 465-475
Abstract:
The Global Financial Crisis (GFC) demonstrated the devastating impact of extreme credit risk on global economic stability. We develop four credit models to better measure credit risk in extreme economic circumstances, by applying innovative Conditional Value at Risk (CVaR) techniques to structural models (called Xtreme-S), transition models (Xtreme-T), quantile regression models (Xtreme-Q), and the author's unique iTransition model (Xtreme-i) which incorporates industry factors into transition matrices. We find the Xtreme-S and Xtreme-Q models to be the most responsive to changing market conditions. The paper also demonstrates how the models can be used to determine capital buffers required to deal with extreme credit risk.
Keywords: Uncertainty modeling; Credit risk; Conditional Value at Risk; Conditional probability of default; Capital buffers (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221714010182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:249:y:2016:i:2:p:465-475
DOI: 10.1016/j.ejor.2014.12.017
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().