Aggregation heuristic for the open-pit block scheduling problem
Enrique Jélvez,
Nelson Morales,
Pierre Nancel-Penard,
Juan Peypouquet and
Patricio Reyes
European Journal of Operational Research, 2016, vol. 249, issue 3, 1169-1177
Abstract:
In order to establish a production plan, an open-pit mine is partitioned into a three-dimensional array of blocks. The order in which blocks are extracted and processed has a dramatic impact on the economic value of the exploitation. Since realistic models have millions of blocks and constraints, the combinatorial optimization problem of finding the extraction sequence that maximizes the profit is computationally intractable. In this work, we present a procedure, based on innovative aggregation and disaggregation heuristics, that allows us to get feasible and nearly optimal solutions. The method was tested on the public reference library MineLib and improved the best known results in the literature in 9 of the 11 instances of the library. Moreover, the overall procedure is very scalable, which makes it a promising tool for large size problems.
Keywords: Mine planning; Block aggregation; Open-pit block scheduling; Integer programming; Heuristics (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715009704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:249:y:2016:i:3:p:1169-1177
DOI: 10.1016/j.ejor.2015.10.044
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().