Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization
Margherita Giuzio,
Davide Ferrari and
Sandra Paterlini
European Journal of Operational Research, 2016, vol. 250, issue 1, 251-261
Abstract:
Two important problems arising in traditional asset allocation methods are the sensitivity to estimation error of portfolio weights and the high dimensionality of the set of candidate assets. In this paper, we address both issues by proposing a new criterion for portfolio selection. The new criterion is a two-stage description of the available information, where the q-entropy, a generalized measure of information, is used to code the uncertainty of the data given the parametric model and the uncertainty related to the model choice. The information about the model is coded in terms of a prior distribution that promotes asset weights sparsity. Our approach carries out model selection and estimation in a single step, by selecting a few assets and estimating their portfolio weights simultaneously. The resulting portfolios are doubly robust, in the sense that they can tolerate deviations from both assumed data model and prior distribution for model parameters. Empirical results on simulated and real-world data support the validity of our approach.
Keywords: Investment analysis; Penalized least squares; q-entropy; Sparsity; Index tracking (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715008127
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:250:y:2016:i:1:p:251-261
DOI: 10.1016/j.ejor.2015.08.056
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().