A new group ranking approach for ordinal preferences based on group maximum consensus sequences
Li-Ching Ma
European Journal of Operational Research, 2016, vol. 251, issue 1, 171-181
Abstract:
Group ranking problems involve aggregating individual rankings to generate group ranking which represents consolidated group preference. Group ranking problems are commonly applied in real-world decision-making problems; however, supporting a group decision-making process is difficult due to the existence of multiple decision-makers, each with his/her own opinions. Hence, determining how to best aid the group ranking process is an important consideration. This study aims to determine a total ranking list which meets group consensus preferences for group ranking problems. A new group consensus mining approach based on the concept of tournament matrices and directed graphs is first developed; an optimization model involving maximum consensus sequences is then constructed to achieve a total ranking list. Compared to previous methods, the proposed approach can generate a total ranking list involving group consensus preferences. It can also determine maximum consensus sequences without the need for tedious candidate generation processes, while also providing flexibility in solving ranking problems using different input preferences that vary in format and completeness. In addition, consensus levels are adjustable.
Keywords: Group decisions and negotiations; Data mining; Group consensus; Optimization model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715009686
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:251:y:2016:i:1:p:171-181
DOI: 10.1016/j.ejor.2015.10.042
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().