Global optimization using q-gradients
Érica J.C. Gouvêa,
Rommel G. Regis,
Aline C. Soterroni,
Marluce C. Scarabello and
Fernando M. Ramos
European Journal of Operational Research, 2016, vol. 251, issue 3, 727-738
Abstract:
The q-gradient vector is a generalization of the gradient vector based on the q-derivative. We present two global optimization methods that do not require ordinary derivatives: a q-analog of the Steepest Descent method called the q-G method and a q-analog of the Conjugate Gradient method called the q-CG method. Both q-G and q-CG are reduced to their classical versions when q equals 1. These methods are implemented in such a way that the search process gradually shifts from global in the beginning to almost local search in the end. Moreover, Gaussian perturbations are used in some iterations to guarantee the convergence of the methods to the global minimum in a probabilistic sense. We compare q-G and q-CG with their classical versions and with other methods, including CMA-ES, a variant of Controlled Random Search, and an interior point method that uses finite-difference derivatives, on 27 well-known test problems. In general, the q-G and q-CG methods are very promising and competitive, especially when applied to multimodal problems.
Keywords: Metaheuristics; Global optimization; q-calculus; q-gradient vector; Convergence (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716000059
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:251:y:2016:i:3:p:727-738
DOI: 10.1016/j.ejor.2016.01.001
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().