EconPapers    
Economics at your fingertips  
 

Online optimization of casualty processing in major incident response: An experimental analysis

Duncan T. Wilson, Glenn I. Hawe, Graham Coates and Roger S. Crouch

European Journal of Operational Research, 2016, vol. 252, issue 1, 334-348

Abstract: When designing an optimization model for use in mass casualty incident (MCI) response, the dynamic and uncertain nature of the problem environment poses a significant challenge. Many key problem parameters, such as the number of casualties to be processed, will typically change as the response operation progresses. Other parameters, such as the time required to complete key response tasks, must be estimated and are therefore prone to errors. In this work we extend a multi-objective combinatorial optimization model for MCI response to improve performance in dynamic and uncertain environments. The model is developed to allow for use in real time, with continuous communication between the optimization model and problem environment. A simulation of this problem environment is described, allowing for a series of computational experiments evaluating how model utility is influenced by a range of key dynamic or uncertain problem and model characteristics. It is demonstrated that the move to an online system mitigates against poor communication speed, while errors in the estimation of task duration parameters are shown to significantly reduce model utility.

Keywords: Scheduling; Combinatorial optimization; Emergency response; Disaster management; Dynamic (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716000503
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:252:y:2016:i:1:p:334-348

DOI: 10.1016/j.ejor.2016.01.021

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:252:y:2016:i:1:p:334-348