A hybrid scenario cluster decomposition algorithm for supply chain tactical planning under uncertainty
Masoumeh Kazemi Zanjani,
Omid Sanei Bajgiran and
Mustapha Nourelfath
European Journal of Operational Research, 2016, vol. 252, issue 2, 466-476
Abstract:
We propose a Hybrid Scenario Cluster Decomposition (HSCD) heuristic for solving a large-scale multi-stage stochastic mixed-integer programming (MS-MIP) model corresponding to a supply chain tactical planning problem. The HSCD algorithm decomposes the original scenario tree into smaller sub-trees that share a certain number of predecessor nodes. Then, the MS-MIP model is decomposed into smaller scenario-cluster multi-stage stochastic sub-models coordinated by Lagrangian terms in their objective functions, in order to compensate the lack of non-anticipativity corresponding to common ancestor nodes of sub-trees. The sub-gradient algorithm is then implemented in order to guide the scenario-cluster sub-models into an implementable solution. Moreover, a Variable Fixing Heuristic is embedded into the sub-gradient algorithm in order to accelerate its convergence rate. Along with the possibility of parallelization, the HSCD algorithm provides the possibility of embedding various heuristics for solving scenario-cluster sub-models. The algorithm is specialized to lumber supply chain tactical planning under demand and supply uncertainty. An ad-hoc heuristic, based on Lagrangian Relaxation, is proposed to solve each scenario-cluster sub-model. Our experimental results on a set of realistic-scale test cases reveal the efficiency of HSCD in terms of solution quality and computation time.
Keywords: Multi-stage stochastic programming; Scenario decomposition; Lagrangian Relaxation; Sub-gradient method; Variable Fixing Heuristic (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171600093X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:252:y:2016:i:2:p:466-476
DOI: 10.1016/j.ejor.2016.01.048
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().