EconPapers    
Economics at your fingertips  
 

Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization

Miguel Lejeune and Siqian Shen

European Journal of Operational Research, 2016, vol. 252, issue 2, 522-539

Abstract: We consider a class of multi-objective probabilistically constrained programs (MOPCP) with a joint probabilistic constraint and a variable risk level. We consider two cases with only a random right-hand side vector or a multi-row random technology matrix, and propose a Boolean modeling framework to derive new mixed-integer linear programs (MILP) that are either equivalent reformulations or inner approximations of MOPCP, respectively. Via testing randomly generated MOPCP instances, we demonstrate modeling insights pertaining to the most suitable MILP, to the trade-offs between conflicting objectives of cost/revenue and reliability, and to the parameter scalarization determining relative importance of each objective. We then focus on several MOPCP variants of a multi-portfolio financial optimization problem to implement a downside risk measure, which can be used in a centralized or decentralized investment context. We study the impact of modeling parameters on the portfolios, show, via a cross-validation study, robustness of MOPCP, and perform a comparative analysis of the optimal investment decisions.

Keywords: Multi-portfolio optimization; Probabilistic constraint; Variable reliability; Multi-objective programming; Boolean programming (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716000849
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:252:y:2016:i:2:p:522-539

DOI: 10.1016/j.ejor.2016.01.039

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:252:y:2016:i:2:p:522-539