EconPapers    
Economics at your fingertips  
 

Predictive analytics model for healthcare planning and scheduling

Shannon L. Harris, Jerrold H. May and Luis G. Vargas

European Journal of Operational Research, 2016, vol. 253, issue 1, 121-131

Abstract: Patients who fail to attend their appointments complicate appointment scheduling systems. The accurate prediction of no-shows may assist a clinic in developing operational mitigation strategies, such as overbooking appointment slots or special management of patients who are predicted as being highly likely to not attend. We present a new model for predicting no-show behavior based solely on the binary representation of a patient's historical attendance history. Our model is a parsimonious, pure predictive analytics technique, which combines regression-like modeling and functional approximation, using the sum of exponential functions, to produce probability estimates. It estimates parameters that can give insight into the way in which past behavior affects future behavior, and is important for clinic planning and scheduling decisions to improve patient service. Additionally, our choice of exponential functions for modeling leads to tractable analysis that is proved to produce optimal and unique solutions. We illustrate our approach using data from patients’ attendance and non-attendance at Veteran Health Administration (VHA) outpatient clinics.

Keywords: Analytics; OR in health services; Predictive modeling; Outpatient appointments; No-show modeling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716300376
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:253:y:2016:i:1:p:121-131

DOI: 10.1016/j.ejor.2016.02.017

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:253:y:2016:i:1:p:121-131