EconPapers    
Economics at your fingertips  
 

Lagrangean relaxation of the hull-reformulation of linear generalized disjunctive programs and its use in disjunctive branch and bound

Francisco Trespalacios and Ignacio E. Grossmann

European Journal of Operational Research, 2016, vol. 253, issue 2, 314-327

Abstract: In this work, we present a Lagrangean relaxation of the hull-reformulation of discrete-continuous optimization problems formulated as linear generalized disjunctive programs (GDP). The proposed Lagrangean relaxation has three important properties. The first property is that it can be applied to any linear GDP. The second property is that the solution to its continuous relaxation always yields 0–1 values for the binary variables of the hull-reformulation. Finally, it is simpler to solve than the continuous relaxation of the hull-reformulation. The proposed Lagrangean relaxation can be used in different GDP solution methods. In this work, we explore its use as primal heuristic to find feasible solutions in a disjunctive branch and bound algorithm. The modified disjunctive branch and bound is tested with several instances with up to 300 variables. The results show that the proposed disjunctive branch and bound performs faster than other versions of the algorithm that do not include this primal heuristic.

Keywords: MILP; Disjunctive programming; GDP; Lagrangean relaxation (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716301011
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:253:y:2016:i:2:p:314-327

DOI: 10.1016/j.ejor.2016.02.048

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:253:y:2016:i:2:p:314-327