EconPapers    
Economics at your fingertips  
 

A DEA based composite measure of quality and its associated data uncertainty interval for health care provider profiling and pay-for-performance

Michael Shwartz, James F. Burgess and Joe Zhu

European Journal of Operational Research, 2016, vol. 253, issue 2, 489-502

Abstract: Composite measures calculated from individual performance indicators increasingly are used to profile and reward health care providers. We illustrate an innovative way of using Data Envelopment Analysis (DEA) to create a composite measure of quality for profiling facilities, informing consumers, and pay-for-performance programs. We compare DEA results to several widely used alternative approaches for creating composite measures: opportunity-based-weights (OBW, a form of equal weighting) and a Bayesian latent variable model (BLVM, where weights are driven by variances of the individual measures). Based on point estimates of the composite measures, to a large extent the same facilities appear in the top decile. However, when high performers are identified because the lower limits of their interval estimates are greater than the population average (or, in the case of the BLVM, the upper limits are less), there are substantial differences in the number of facilities identified: OBWs, the BLVM and DEA identify 25, 17 and 5 high-performers, respectively. With DEA, where every facility is given the flexibility to set its own weights, it becomes much harder to distinguish the high performers. In a pay-for-performance program, the different approaches result in very different reward structures: DEA rewards a small group of facilities a larger percentage of the payment pool than the other approaches. Finally, as part of the DEA analyses, we illustrate an approach that uses Monte Carlo resampling with replacement to calculate interval estimates by incorporating uncertainty in the data generating process for facility input and output data. This approach, which can be used when data generating processes are hierarchical, has the potential for wider use than in our particular application.

Keywords: Data Envelopment Analysis (DEA); Health care quality; Monte Carlo; Bootstrapping; Performance (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716301023
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:253:y:2016:i:2:p:489-502

DOI: 10.1016/j.ejor.2016.02.049

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:253:y:2016:i:2:p:489-502