Heuristics for the generalized median graph problem
Leonardo M. Musmanno and
Celso C. Ribeiro
European Journal of Operational Research, 2016, vol. 254, issue 2, 371-384
Abstract:
Structural approaches for pattern recognition frequently make use of graphs to represent objects. The concept of object similarity is of great importance in pattern recognition. The graph edit distance is often used to measure the similarity between two graphs. It basically consists in the amount of distortion needed to transform one graph into the other. The median graph of a set S of graphs is a graph of S that minimizes the sum of its distances to all other graphs in S. The generalized median graph of S is a graph that minimizes the sum of the distances to all graphs in S. It is the graph that best captures the information contained in S and may be regarded as the best representative of the set. Exact methods for solving the generalized median graph problem are capable to handle only a few small graphs. We propose two new heuristics for solving the generalized median graph problem: a greedy adaptive algorithm and a GRASP heuristic. Numerical results indicate that both heuristics can be used to obtain good approximate solutions for the generalized median graph problem, significantly improving the initial solutions and the median graphs. Therefore, the generalized median graph can be effectively computed and used as a better representation than the median graph in a number of relevant pattern recognition applications. This conclusion is supported by experiments with a classification problem and comparisons with algorithm k-NN.
Keywords: Heuristics; GRASP; Median graph; Graph similarity; Greedy adaptive algorithms (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716301941
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:254:y:2016:i:2:p:371-384
DOI: 10.1016/j.ejor.2016.03.048
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().