Allocation of flows in closed bipartite queueing networks
James D. Brooks,
Koushik Kar and
David J. Mendonça
European Journal of Operational Research, 2016, vol. 255, issue 2, 333-344
Abstract:
This paper describes a novel method for allocating agents to routes in a closed bipartite queueing network to maximize system throughput using three open network approximations. Results are presented which compare this method with known prior work and optimal solutions to provide an empirical optimality gap. Average empirical optimality gaps of 1.29 percent, 1.13 percent and 1.29 percent are observed for the three approximations considered. Further, because many systems are under the control of rational agents, conditions are derived in order to determine properties of the market context that induce optimal behavior. It is shown that uniform rewards do not yield an efficient rational equilibrium in general. However, for systems with homogeneous servers and travel times or those with travel times that are much larger than queue waiting times, uniform rewarding is optimal.
Keywords: (I) Networks; (O) OR in disaster relief; Queueing systems; Routing control (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722171630337X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:255:y:2016:i:2:p:333-344
DOI: 10.1016/j.ejor.2016.05.017
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().