EconPapers    
Economics at your fingertips  
 

Discrete representation of non-dominated sets in multi-objective linear programming

Lizhen Shao and Matthias Ehrgott

European Journal of Operational Research, 2016, vol. 255, issue 3, 687-698

Abstract: In this paper we address the problem of representing the continuous but non-convex set of non-dominated points of a multi-objective linear programme by a finite subset of such points. We prove that a related decision problem is NP-complete. Moreover, we illustrate the drawbacks of the known global shooting, normal boundary intersection and normal constraint methods concerning the coverage error and uniformity level of the representation by examples. We propose a method which combines the global shooting and normal boundary intersection methods. By doing so, we overcome their limitations, but preserve their advantages. We prove that our method computes a set of evenly distributed non-dominated points for which the coverage error and the uniformity level can be guaranteed. We apply this method to an optimisation problem in radiation therapy and present illustrative results for some clinical cases. Finally, we present numerical results on randomly generated examples.

Keywords: Multi-objective optimisation; Linear programming; Non-dominated set; Discrete representation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716303010
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:255:y:2016:i:3:p:687-698

DOI: 10.1016/j.ejor.2016.05.001

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:255:y:2016:i:3:p:687-698