Compact Markov-modulated models for multiclass trace fitting
Giuliano Casale,
Andrea Sansottera and
Paolo Cremonesi
European Journal of Operational Research, 2016, vol. 255, issue 3, 822-833
Abstract:
Markov-modulated Poisson processes (MMPPs) are stochastic models for fitting empirical traces for simulation, workload characterization and queueing analysis purposes. In this paper, we develop the first counting process fitting algorithm for the marked MMPP (M3PP), a generalization of the MMPP for modeling traces with events of multiple types. We initially explain how to fit two-state M3PPs to empirical traces of counts. We then propose a novel form of composition, called interposition, which enables the approximate superposition of several two-state M3PPs without incurring into state space explosion. Compared to exact superposition, where the state space grows exponentially in the number of composed processes, in interposition the state space grows linearly in the number of composed M3PPs. Experimental results indicate that the proposed interposition methodology provides accurate results against artificial and real-world traces, with a significantly smaller state space than superposed processes.
Keywords: Counting process; Marked Markov-modulated Poisson process; Trace; Fitting (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716304258
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:255:y:2016:i:3:p:822-833
DOI: 10.1016/j.ejor.2016.06.005
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().