EconPapers    
Economics at your fingertips  
 

Comparison of least squares Monte Carlo methods with applications to energy real options

Selvaprabu Nadarajah, François Margot and Nicola Secomandi

European Journal of Operational Research, 2017, vol. 256, issue 1, 196-204

Abstract: Least squares Monte Carlo (LSM) is a state-of-the-art approximate dynamic programming approach used in financial engineering and real options to value and manage options with early or multiple exercise opportunities. It is also applicable to capacity investment and inventory/production management problems with demand/supply forecast updates arising in operations and hydropower-reservoir management. LSM has two variants, referred to as regress-now/later (LSMN/L), which compute continuation/value function approximations (C/VFAs). We provide novel numerical evidence for the relative performance of these methods applied to energy swing and storage options, two typical real options, using a common price evolution model. LSMN/L estimate C/VFAs that yield equally accurate (near optimal) and precise lower and dual (upper) bounds on the value of these real options. Estimating the LSMN/L C/VFAs and their associated lower bounds takes similar computational effort. In contrast, the estimation of a dual bound using the LSML VFA instead of the LSMN CFA takes seconds rather than minutes or hours. This finding suggests the use of LSML in lieu of LSMN when estimating dual bounds on the value of early or multiple exercise options, as well as of related capacity investment and inventory/production policies.

Keywords: Energy; Real options; Least-squares Monte Carlo; Approximate dynamic programming; Information relaxation and duality (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716304404
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:256:y:2017:i:1:p:196-204

DOI: 10.1016/j.ejor.2016.06.020

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:256:y:2017:i:1:p:196-204