Compact mixed integer linear programming models to the minimum weighted tree reconstruction problem
Bernard Fortz,
Olga Oliveira and
Cristina Requejo
European Journal of Operational Research, 2017, vol. 256, issue 1, 242-251
Abstract:
The Minimum Weighted Tree Reconstruction (MWTR) problem consists of finding a minimum length weighted tree connecting a set of terminal nodes in such a way that the length of the path between each pair of terminal nodes is greater than or equal to a given distance between the considered pair of terminal nodes. This problem has applications in several areas, namely, the inference of phylogenetic trees, the modeling of traffic networks and the analysis of internet infrastructures. In this paper, we investigate the MWTR problem and we present two compact mixed-integer linear programming models to solve the problem. Computational results using two different sets of instances, one from the phylogenetic area and another from the telecommunications area, show that the best of the two models is able to solve instances of the problem having up to 15 terminal nodes.
Keywords: Mixed integer linear programming; Tree realization; Topology discovery; Routing topology inference; Minimum evolution problem (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716304349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:256:y:2017:i:1:p:242-251
DOI: 10.1016/j.ejor.2016.06.014
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().