Scalability of using Restricted Boltzmann Machines for combinatorial optimization
Malte Probst,
Franz Rothlauf and
Jörn Grahl
European Journal of Operational Research, 2017, vol. 256, issue 2, 368-383
Abstract:
Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Restricted Boltzmann Machines (RBMs) are generative neural networks with these desired properties. We integrate an RBM into an EDA and evaluate the performance of this system in solving combinatorial optimization problems with a single objective. We assess how the number of fitness evaluations and the CPU time scale with problem size and complexity. The results are compared to the Bayesian Optimization Algorithm (BOA), a state-of-the-art multivariate EDA, and the Dependency Tree Algorithm (DTA), which uses a simpler probability model requiring less computational effort for training the model. Although RBM–EDA requires larger population sizes and a larger number of fitness evaluations than BOA, it outperforms BOA in terms of CPU times, in particular if the problem is large or complex. This is because RBM–EDA requires less time for model building than BOA. DTA with its restricted model is a good choice for small problems but fails for larger and more difficult problems. These results highlight the potential of using generative neural networks for combinatorial optimization.
Keywords: Combinatorial optimization; Heuristics; Evolutionary computation; Estimation of Distribution Algorithms; Neural Networks (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716305252
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:256:y:2017:i:2:p:368-383
DOI: 10.1016/j.ejor.2016.06.066
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().