Time-varying quantile association regression model with applications to financial contagion and VaR
Wuyi Ye,
Kebing Luo and
Xiaoquan Liu
European Journal of Operational Research, 2017, vol. 256, issue 3, 1015-1028
Abstract:
This paper develops a quantile association regression model, which is able to capture the dynamic quantile dependence in the tails of conditional distributions. The association measure, the quantile-specific odds ratio (qor), captures the tendency of two random variables being simultaneously below specific quantiles. It is independent of marginal distributions and invariant to monotonic transformation, and enjoys methodological advantages over popular alternatives such as the copula. The ability of the qor measure to capture and forecast a range of different dependence structures is first shown via simulations. In the financial application, we implement the model and compute the qor on a daily basis to assess contagion for 10 stock markets during two recent crises. Our empirical results show that contagion exists during the US banking crisis between the US and all tested markets and between Greece and the tested European markets during the Euro crisis. Hence the model is able to capture the changes in quantile dependence between stock markets and offer a vivid description of market events. In addition, the model provides an accurate valuation of daily value-at-risk (VaR).
Keywords: Finance; Copula; Local polynomial regression; Financial crisis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716306038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:256:y:2017:i:3:p:1015-1028
DOI: 10.1016/j.ejor.2016.07.048
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().