An integer programming approach for fuzzy rule-based classification systems
Shahab Derhami and
Alice E. Smith
European Journal of Operational Research, 2017, vol. 256, issue 3, 924-934
Abstract:
Fuzzy rule-based classification systems (FRBCSs) have been successfully employed as a data mining technique where the goal is to discover the hidden knowledge in a data set in the form of interpretable rules and develop an accurate classification model. In this paper, we propose an exact approach to learn fuzzy rules from a data set for a FRBCS. First, we propose a mixed integer programming model that extracts optimal fuzzy rules from a data set. The model’s embedded feature selection allows absence of insignificant features in a fuzzy rule in order to enhance its accuracy and coverage. In order to build a comprehensive Rule Base (RB), we use this model in an iterative procedure that finds multiple rules by converting the obtained optimal solutions into a set of taboo constraints that prevents the model from re-finding the previously obtained rules. Furthermore, it changes the search direction by temporarily removing the correctly predicted patterns from the training set aiming to find the optimal rules that predict uncovered patterns in the training set. This procedure ensures that most of the patterns in the training set are covered by the RB. Next, another mixed integer programming model is developed to maximize predictive accuracy of the classifier by pruning the RB and removing redundant rules. The predictive accuracy of the proposed model is tested on the benchmark data sets and compared with the state-of-the-art algorithms from the literature by non-parametric statistical tests.
Keywords: Fuzzy sets; Integer programming; Classification; Rule learning; Data mining (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716305240
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:256:y:2017:i:3:p:924-934
DOI: 10.1016/j.ejor.2016.06.065
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().