Can Farrell's allocative efficiency be generalized by the directional distance function approach?Author-Name: Aparicio, Juan
Jesus T. Pastor and
José Zofío
Authors registered in the RePEc Author Service: Juan Aparicio
European Journal of Operational Research, 2017, vol. 257, issue 1, 345-351
Abstract:
Cost or revenue efficiency measurement based on the approach initiated by Farrell has received great attention from academics and practitioners since the fifties. Farrell's approach decomposes cost efficiency into two different sources, viz. technical efficiency and allocative efficiency. Technical efficiency is estimated by means of the Shephard input or output distance functions, while allocative efficiency is derived as a residual between cost or revenue efficiency and its corresponding technical efficiency component. The directional distance function (DDF) was introduced later in the literature to complete duality theory with respect to the profit function and as a generalization of the Shephard input and output distance functions. Considering the case of cost efficiency we show that, although the DDF correctly encompasses the technical efficiency component of the Farrell approach, this is not true for the allocative component. We show that both approaches yield different allocative (in)efficiency terms – unless technical efficiency is assumed, and how these terms are related. The practical implications of the multiplicative and additive approaches are discussed and illustrated.
Keywords: Technical efficiency; Allocative efficiency; Directional distance functions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221716306221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:257:y:2017:i:1:p:345-351
DOI: 10.1016/j.ejor.2016.08.007
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().